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LETTER TO THE EDITOR 

Propagation of three-dimensional solitary pulses in waveguide 
channels with cylindrical symmetry 

R Mishaev and E Teplitsky 
Tbilisi State University, Department of Physics, Chavchavadze 3, Tbilisi 380028, 
Georgian SSR, USSR 

Received 10 July 1989 

Abstract. The solitary-wave solution of the (3 + 1)-dimensional non-linear Schrodinger 
equation is obtained, taking into account the energy exchange between the central and 
peripheral parts of the pulse inside and outside the induced waveguide in a non-linear 
medium. 

The real setting of the self-channelling problem is the description of the three- 
dimensional pulse evolution in non-linear media. The main difficulty in this is con- 
nected with the conclusion derived in a series of works (Zakharov and Kuznetsov 
1986), on the instability of three-dimensional solitons and the possibility of collapse 
in the plasma, as well as in optical fibres. However, as was demonstrated in Lomov 
and Rabinovich (1988), three-dimensional solitary waves may exist in open systems, 
i.e. along with the interaction of non-linear systems with external dissipative effects. 
Another case of an open system connected with inter-mode interaction is considered 
in Afanasiev et af (1988). Hence the self-channelling description requires taking into 
account not only the active losses, usually known to be small, but also the ‘dynamic 
losses’, connected with energy exchange via side-boundaries of the waveguide channel, 
rising dynamically in the pulse self-organisation process. In this letter we consider 
one more possibility of an open system appearing naturally in a single-mode regime 
that could be named the soliton ‘self-supply’. As the transverse structure of a laser 
beam is non-uniform and is usually approximated by a Gaussian field density distribu- 
tion, in non-linear propagation only the central part of the beam takes part, whereas 
the propagation of the pulse periphery might be described by the linear parabolic 
equation for slowly changing amplitude. Taking the power distribution in the channel 
cross section in the form: 

P (  r )  = P ( O )  exp( -T*/ r,$ 

( P ( 0 )  = /E(0)I2/4.rrAt is the peak pulse power, At  being the pulse duration) and applying 
the concept of critical self-channelling power P,,, we obtain the estimate for the 
‘effective channel radius’: 

r 2 -  2 
1 - 7 0  In[ P(O)/ PWl. 

As in the self-channelling process a deformation of the ‘boundaries’ between the linear 
and non-linear areas takes place, there is a partial transfer of energy from the external 
area into the channel, which can be characterised by the coupling index a. The energy 
transferred from the canalised area into the external area (characterised by index b )  
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will be much less, in agreement with the self-channelling conditions. Thus u14T=T112 
is the energy transferred into the channel (where 4 is the field outside the channel 
area), whilst bl+T=rl12 (where + is the field inside the channel) accounts for the dynamic 
losses, which could be neglected (in Afanasiev et ul (1988) they are connected with 
intensive modes of the field inside the channel). The field 4 obeys the linear equation 

a4 a24 a24 1 a4 1 a24 
az ax2 a T 2  T ar r2a(pZ 

2i-+-+-+--+--=O 

the solution of which is of the form (Marcuse 1972) (the choice of this solution 
corresponds to the condition R (  T, Q )  + 0 as T + 00 and the fact that at T - 0 there exists 
the focus; hence the plane-wave approximation cannot be used near the boundary): 

where zo is the ‘focus’ of the induced lens (Chiao et a1 1964), henceforth to be used 
as the channel scale zero point; R ( T ,  Q )  is the radial equation solution in cylindrical 
variables; K is the parameter of variable decoupling; x = t - z /  U ( U  is the pulse group 
velocity). The field amplitude might be normed by the inverse coupling parameter 
(i.e. the renormed amplitude represents the part of external field which spreads into 
the channel). 

The self-channelling process considered from the open system viewpoint is 
described by the non-linear Schrodinger equation that has, in non-dimensional variables 
and assuming cyclindrical symmetry and assuming the presence of the amplifying term 
(Hasegawa and Kodama 1981), the following form: 

For the case of pulse propagation in optical fibres these variables have the form 
(Abdulaev et a1 1987) 

E kh2(E(0)I2 ”’ +=- ‘=( holk!tl ) 6 = sgn( - k”) 
E(O) 

khzlE(0)12 
Z ’ = (  ho ) hZklE(0)l2 

h0 
5 =  

whereas the coupling index a is normed by the following condition: 

The direct insertion demonstrates that equation ( 2 )  has the following exact solution 
in the form of the stable three-dimensional (in coordinates) soliton (Go = $(O)): 

for S = 1, and for S = -1  we have the kink-form solution 
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These solutions determine the pulse form after the self-channelling appearance and 
they have the form of a solitary wave pulsing in the radial direction, with this pulsation 
gradually disappearing when 5 + 00. This field dependence on p is of the general 
character and depends upon the choice of the field profile (Zakharov and Synach 
1975). As can be seen from (3) and (4), these solutions are being factorised, so that 
the radial part is a limited function with module equal to 1, whereas the longitudinal 
part is the solution of the one-dimensional NLS equation-its stability has been shown 
in many papers (Abdulaev er a1 1987). As can be seen from (3) and (4), the field 
intensity in the established channel no longer depends upon the transverse field 
structure. 

If we consider (2) with the losses freely dependent on time (i.e. with the change 
of the last term by ir(g)$) it is possible to see that its exact solution in the form of 
the modulated packet is 

where 

( A  is the parameter of variable decoupling) will be non-blurring only in the case of 
the following choice: 

It is worth mentioning that such a form of r([), as was found for the PKdv equation 
in Baby (1987), is necessary for the Painlevi property to exist. It is to be expected 
that the property of non-blurring of the wave packets is essentially coupled with the 
dissipation function being in the form of (6). From the consideration of the problem 
carried out above, it is found that, in the case of the particular profile of the transverse 
structure of the input pulse, the field structure outside the waveguide channel essentially 
influences the propagation distance and the properties of the optical soliton. 
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